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Abstract
In-context learning has been extensively val-
idated in large language models. However,
the mechanism and selection strategy for in-
context example selection, which is a crucial
ingredient in this approach, lacks systematic
and in-depth research. In this paper, we pro-
pose a data compression approach to the selec-
tion of in-context examples. We introduce a
two-stage method that can effectively choose
relevant examples and retain sufficient infor-
mation about the training dataset within the
in-context examples. Our method shows a sig-
nificant improvement of an average of 5.90%
across five different real-world datasets using
four language models.

1 Introduction

Drawing inspiration from recent research that re-
gards Large Language Models (LLMs) as an effi-
cient means of compressing pre-training datasets,
and the notion that In-Context Learning (ICL) can
be seen as fine-tuning on example datasets (Dai
et al., 2022), we assume that LLMs can achieve
data re-compression through ICL. In other words,
an effective training dataset compression method
can aid in the selection of in-context examples.
Looking at the matter from another perspective, it
is evident that fine-tuning the entire dataset would
yield the best results. However, in the case of ICL,
we typically choose only a few examples as LLM
prompts due to the limitations of input window
length. By employing data compression techniques,
we can ensure that the majority of data information
is preserved in the in-context examples, which is
also the aim of dataset pruning.

Based on the aforementioned analysis, we pro-
pose to utilize the influence function (Koh and
Liang, 2017), which has exhibited efficacy in
dataset pruning, to select examples for ICL. How-
ever, recent studies on ICL have revealed that the

⋆ Equal contribution

relevance between the query source and in-context
examples is critical for ICL. Furthermore, the influ-
ence function requires the gradient of parameters,
which is computationally expensive and inefficient.
To tackle the aforementioned issues, we suggest a
two-stage method. Firstly, relevant examples for
the query input are recalled, which ensures the cor-
relation between the examples and the query source.
Secondly, our meta-gradient-based influence func-
tion is utilized to calculate the influence score for
each recalled example. Finally, based on the influ-
ence score, in-context examples are selected from
the recalled examples. Notably, our framework
compresses important information from the train-
ing set into the in-context examples, thereby en-
hancing the performance of ICL. Additionally, our
framework is data-independent, relies solely on
a small number of model parameters, and does
not require the training of any additional models.
Numerous experiments indicate that our method
shows a significant improvement of an average of
5.90% on five different real-world datasets using
multiple language models.

2 Background

2.1 In-Context Learning

The ICL scenario of LLMs can be regarded as a
conditional text generation problem. Concretely,
the probability of generating a target y is condi-
tioned on the context C, which includes k exam-
ples and the source x. Therefore, the probability
can be expressed as:

pLLM(y | C, x) =
T∏
t=1

p (yt | C, x, y<t)

where LLM denotes the parameters of
the large language model, and C =
{x1, y1, x2, y2, . . . , xk, yk} is a context string
concatenating k training instances. For example,
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(xk, yk) is concatenated with the special character,
e.g., “\n” or “Sentence: x; Sentiment y.” which
is denoted as pk. In this paper, we have different
example sets C at different stages, C1 in the first
stage, and C2 in the second stage, where C2 is a
subset of C1.

Dai et al. (2022) explains language models as
meta-optimizers and understands ICL as a kind of
implicit finetuning:

F̃ICL(q) = WZSLq+
∑
i

(
WV x′

i ⊗
(
WKx′

i

)T)
q

=WZSLq+∆WICLq

=(WZSL +∆WICL)q,

(1)

where ZSL denotes the zero-shot learning, which
only contains the source x; x ∈ Rd is the input
representation of a query token t, and q = WQx ∈
Rd′ is the attention query vector; x′ ∈ Rd denotes
the input representations of the example’s token;
WQ,WK ,WV ∈ Rd′×d are the projection matrices
for computing the attention queries, keys, and val-
ues, respectively. Dai et al. (2022) regards WV X

′

as some meta-gradients, which are used to compute
the updated matrix ∆WICL.

2.2 Dataset Pruning

Investigating the data redundant problem not only
helps to improve the training efficiency but also
helps us understand the representation ability of
small data and how many training samples are re-
quired and sufficient for a learning system. (Yang
et al., 2022) proposed to use the Influence Func-
tion to accurately and fast estimate the parameter
change caused by weighting an example p for the
training dataset. The influence of weighting p on
the parameters is given by:

Iparam(p) =
dθ̂δ,p
dδ

∣∣∣∣
δ=0

= −H−1

θ̂
∇θL(p, θ̂), (2)

where Hθ̂ = 1
n

∑
pi∈D ∇2

θL(pi, θ̂) is the Hessian
and positive definite by assumption, Iparam(p) ∈
RN , N is the number of network parameters, D
is the original dataset. After getting the weighting
of each example p, (Yang et al., 2022) propose
generalization-guaranteed pruning or cardinality-
guaranteed pruning to get the final compressed
dataset D̂.

3 Method

3.1 Recall
Given the training dataset D and the query source
x, we use BM25 (Robertson et al., 2009) to retrieve
a set of relevant examples C1 for x. For each exam-
ple pj in D, the BM25 score, denoted as R(pj , x),
is computed. This score reflects the relevance of
example pj to the query x. Specifically:

Rj = BM25(pj , x), (3)

where Rj is the relevance score of example pj with
respect to query x.

Subsequently, we form the set C1 which consists
of the top-N examples with the highest relevance
scores:

C1 = {pj |j = 1, 2, . . . , N}, (4)

where N is the number of examples we wish to
recall for the given query x.

3.2 Influence-Awared Rerank
For each p in C1, we calculate the input repre-
sentation of tokens p as P and the meta-gradient
Gp = WV P . To compute Iparam(p) in Eq. (2),
we require the Hessian of p for the parameter WV ,
which necessitates the computation of second-order
derivatives. However, we only have access to first-
order derivatives approximations of the parameters.
Considering that LLMs typically employ cross-
entropy loss and maximum likelihood estimation
(MLE) for fine-tuning, we have opted to employ
the Fisher matrix as an approximation of the Hes-
sian (Barshan et al., 2020). The key to the approxi-
mation process is as follows:

∇2f(x) ≈ ∇f(x)∇f(x)⊤ (5)

Then, combining the Eq. (2) with Eq. (5), the
expression of the influence function for p is:

Iparam(p) = −Ĥ−1

θ̂
Gp, (6)

where Hθ̂ =
1
n

∑
pi∈D GpG

⊤
p .

The score of C1 is determined by a combina-
tion of the influence score and the relevance score,
represented as:

S =
{
∥Iparam(p1)∥2F +R1, . . . , ∥Iparam(pN )∥2F +RN

}
.

Finally, the K in-context learning examples in
C2 are chosen by:

C2 = {pi|i ∈ I} ,where I = arg max
I⊆{1,2,...,|S|}

|I|=K

S.
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K = 3 GPT2-XL GPT2-Large GPT2-Small GPT2-Medium

Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)

Sick BM25 42.63 33.01 27.68 26.72 31.72 23.34 31.52 26.45

Ours 47.07 35.28 31.11 28.51 35.35 26.25 32.53 27.16

Cola BM25 61.84 54.83 63.09 50.24 65.96 48.79 60.98 50.04

Ours 63.09 55.53 64.24 50.74 65.87 48.39 63.95 52.80

Ethos-disability BM25 77.01 57.44 82.76 62.42 68.97 56.92 74.71 50.26

Ours 83.91 66.17 87.36 64.14 74.71 62.96 77.01 51.67

Tweet_eval_stance_feminist BM25 50.75 46.19 44.78 40.96 41.79 31.64 44.78 41.33

Ours 50.75 43.27 46.27 41.88 43.28 32.01 46.27 38.24

Tweet_eval_stance_hillary BM25 49.28 40.63 42.03 41.12 42.03 41.12 46.38 44.95

Ours 53.62 40.68 53.62 51.45 46.38 39.24 50.72 44.73

All dataset Avg BM25 56.30 46.42 52.07 44.29 50.09 40.36 51.67 42.61

Ours 59.69 48.18 56.52 47.34 53.12 41.77 54.10 42.92

Table 1: Results of four ICL examples. The boldface represents the best performance.

4 Experiments

In this section, we empirically verify the efficiency
of our approach. The source code and all exper-
iments have been shared at https://anonymous.
4open.science/r/ICL-F302.

4.1 Experiments setup
This section introduces the detailed information
about our experiments.

Models. We use the open source GPT2 model
family (Radford et al., 2019) (i.e., GPT2-Small,
GPT2-Medium, GPT2-Large, GPT2-XL) as a rep-
resentative of large models to verify the effective-
ness of our method.

Datasets. We use five datasets spanning
four tasks: linguistic analysis, hate speech
detection, tweet classification, and semantic
similarity. Specifically, we employ Lin-
guistic Acceptability dataset (Cola) (Warstadt
et al., 2019), online hate speech detection
dataset (Ethos and Ethos-disability) (Mollas
et al., 2022), Tweet_eval-stance_feminist and
Tweet_eval_stance_hillary (Barbieri et al., 2020)
from Twitter, and Sentences Involving Composi-
tional Knowledge dataset (Sick) (Marelli et al.,
2014). We use Accuracy and F1 score as evaluation
metrics. Detailed dataset statistics and the prompt
templates used can be found in Appendix A.2 and
Appendix A.1.

Implementation Details. In the study, we chose
K = 3 and K = 4 demonstrations to contrast ex-

ample selection methods from training data. We
set N = 100 for all models. Sentences were either
truncated or supplemented to have a uniform length
at 50% of the average sentence length. Although
using multiple transformer layers’ meta-gradient
might be beneficial, considering the time efficiency,
we used the first layer and obtained higher accuracy
than baseline models.

Baselines. Considering the model proposed in
this paper is unsupervised and requires no training,
it possesses a higher generalizability and opera-
tional efficiency compared to models that undergo
supervised training. To ensure a fair comparison,
our primary baseline is the unsupervised BM25-
based In-Context Example Selection. Previous
work (Wang et al., 2023; Gupta et al., 2023) has
demonstrated that BM25 constitutes a robust base-
line for demonstration selection, hence we juxta-
pose our methodology against BM25. The demon-
strations selected by the BM25 are utilized across
all GPT2 models.

4.2 Overall Performance

Tables 1 and 2 display results for three and four
ICL examples, respectively. Observing the last two
rows, our method consistently outperforms across
all models and datasets. Using three and four exam-
ples, we surpass BM25 by averages of 5.17% and
6.64% in all metrics. Specifically, accuracy sees im-
provements of 6.33% and 7.80% over BM25. This
underscores our approach’s superiority. We found
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K = 4 GPT2-XL GPT2-Large GPT2-Small GPT2-Medium

Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)

Sick BM25 42.83 35.60 31.31 31.09 33.54 26.03 31.92 28.07

Ours 46.67 36.70 32.53 30.74 39.19 30.42 35.56 29.80

Cola BM25 60.98 54.48 62.80 51.17 65.10 48.26 60.21 49.85

Ours 61.36 54.38 63.47 51.51 67.31 48.71 64.91 54.05

Ethos-disability BM25 81.61 61.33 85.06 61.60 68.97 56.92 77.01 54.78

Ours 85.06 64.80 87.36 59.87 72.41 59.60 79.31 56.50

Tweet_eval_stance_feminist BM25 46.27 43.54 43.28 36.81 43.28 40.64 38.81 31.02

Ours 53.73 47.36 47.76 44.47 46.27 35.10 44.78 37.11

Tweet_eval_stance_hillary BM25 47.83 40.64 34.78 34.36 39.13 33.92 40.58 39.71

Ours 47.83 38.89 46.38 46.01 46.38 34.81 47.83 44.07

All dataset Avg BM25 55.90 47.12 51.45 43.01 50.00 41.16 49.71 40.69

Ours 58.93 48.42 55.50 46.52 54.31 41.73 54.48 44.30

Table 2: Results of four ICL examples. The boldface represents the best performance.

some higher model performance with three ICL ex-
amples compared to four, which can be explained
by overfitting and example quality. Overfitting in
few-shot learning means too many examples leads
to adaptation to specific instances rather than gen-
eral patterns, reducing accuracy on unseen data.
Furthermore, if the additional fourth example is of
lower quality or relevance, it can degrade model
performance.

5 Related Work

5.1 In-context Learning
In-context learning (ICL) has emerged as a fresh
approach in natural language processing (NLP),
where large models predict based solely on con-
texts supplemented by several examples (Dong
et al., 2022; Shin et al., 2022; Zhang et al., 2023;
Bai et al., 2023). Numerous studies have sought
to modify, improve, and comprehend ICL, encom-
passing topics like prompt tuning (Kim et al., 2022;
Wang et al., 2022a; Mishra et al., 2022), intrinsic
mechanism analysis (Chan et al., 2022; Li et al.,
2023; Garg et al., 2022), evaluations (Srivastava
et al., 2023; Wang et al., 2022b), and its use across
various fields (Sun, 2023), among others.

5.2 Demonstration Selection
The goal of demonstration selection is to identify
optimal examples for ICL. (Liu et al., 2022) demon-
strated that choosing the nearest neighbors as in-
context examples is an effective approach. The

used distance measures include the pre-set L2 dis-
tance or the cosine similarity based on sentence em-
beddings. They introduced KATE, an unsupervised
kNN retriever for in-context example selection.
(Rubin et al., 2022) suggested a two-phase retrieval
process for demonstration selection. For a given
input, it initially employs an unsupervised retriever
(like BM25) to retrieve similar candidate examples
and then uses a supervised retriever, EPR, to pick
demonstrations from these candidates. Recent stud-
ies indicate that LLMs exhibit strong sensitivity to
the examples chosen, resulting in significant perfor-
mance variations (Nie et al., 2022), dependency on
example sequence (Lu et al., 2022), and at times, an
insensitivity to the actual labels (Min et al., 2022).
Our research focuses on reducing training overhead
and condensing crucial data from the training set
into in-context examples, which in turn amplifies
the ICL’s effectiveness.

6 Conclusion

In summary, inspired by LLMs and ICL’s poten-
tial, we devised a two-stage method using the in-
fluence function for optimal in-context example
selection. Our approach ensures relevance with
the query source and efficiently determines influ-
ence scores. The result is an enhancement in ICL
performance, with our experiments validating our
model’s effectiveness. Our framework stands out
due to its data-independent nature and minimal re-
liance on model parameters.
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7 Limitation and Future Work

Given resource constraints and page limitations, we
provide limited validation in this paper. Our model
is a model-agnostic and free-training approach that
can be applied to various in-context learning se-
lection models. In the future, we will validate the
effectiveness of our model on more large-scale lan-
guage models, baselines, and datasets.
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A APPENDIX FOR
REPRODUCIBILITY

A.1 Dataset
In our experiments, we employ Linguis-
tic Acceptability dataset (Cola) (Warstadt
et al., 2019), online hate speech detection
dataset (Ethos and Ethos-disability) (Mollas
et al., 2022), Tweet_eval-stance_feminist and
Tweet_eval_stance_hillary (Barbieri et al., 2020)
from Twitter, and Sentences Involving Composi-
tional Knowledge dataset (Sick) (Marelli et al.,
2014). Table 3 shows more detailed statics of the
datasets.

A.2 Templates.
Based on (Min et al., 2022; Yoo et al., 2022), we
employ minimal templates. For the GPT-2 series
model, we distinguish between input and label us-
ing a space, and this is also applied between demon-
stration examples. Table 4 presents templates from
five datasets, where blue represents the fixed sec-
tion, and black varies depending on the example
content.
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Dataset example label

Sick [S1] The question is:[S2] True or False? Answer:[Label] True,Not sure,False

Cola Review: [S1] Acceptability:[Label] unacceptable,acceptable

Ethos-disability There is a hate based on disability in [S1]True or False? Answer: [Label] False,True

Tweet_eval-stance_feminist Tweet: [S1]Sentiment: [Label] none,against,favor

Tweet_eval-stance_hillary Tweet: [S1]Sentiment: [Label] none,against,favor

Table 4: Template examples.
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